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A GAS-KINETIC METHOD FOR HYPERBOLIC-ELLIPTIC EQUATIONS
AND ITS APPLICATION IN TWO-PHASE FLUID FLOW

KUNXU*

Abstract. A gas-kineticmethodforthehyperbolic-ellipticequationsispresentedin thispaper.In the
mixedtypesystem,theco-existenceandthephasetransitionbetweenliquidandgasarcdescribedbythe
vanderWaals-typeequationofstate(EOS).Dueto theunstablemechanismforafluidin theellipticregion,
interfacebetweentheliquidandgascanbekeptsharpthroughthecondcnsationandevaporationprocess
to removethe"averaged"numericalfluidawayfromtheellipticregion,andtheinterfacethicknessdepends
onthenumcricaldiffusionandstiffnessofthephasechange.A fewexamplesarepresentedin thispaperfor
bothphasetransitionandmultifluidinterfaceproblems.
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1. Introduction. Thestudyof theliquid-gasphasetransitionandtheinterfacemovementhaveboth
theoreticalandpracticalinteresting.Themacroscopicgoverningequationsforthisphenomenaarethemixed
hyperbolicellipticsystem,wherethevanderWaals-typcequationof stateisusuallyused.Manynumerical
schemeshavebeenproposedto solvethemixedtypesystem,andtheintensiveinvestigationforthepossible
Riemannsolverofthemixcdtypeequationsisstill undergoing[24,23,6,22,5,12,14,8].Manycriteria,such
asviscositycapillarityandentropyrateadmissibilityconditions,havebeenwellrecognizedin thecapturing
of realizablesolutions.

Physically,thevanderWaalsmodelcanbe rigorouslyderivedfrom statisticalmechanics,andthe
coexistenceregionof liquidandgascanbewellpredictedfromtheMaxwellconstruction.Theparticle
interactionwithnearbyrepulsionandlongrangedattractioncannaturallygivethephasetransitionand
surfacetensionproperties[16,7].Basedontheparticleinteractionpictures,manyLatticeBoltzmannschemes
havebccndeveloped,see[20,21,26,9,17,3]andrcfencestherein,andtheparticleinteractionmechanismis
usedto capturebothmultifluidinterfaceandphasetransitionprocess.Recently,combiningthemacroscopic
vanderWaalsequationofstate(EOS)andthemesoscopicLatticeBoltzmannmethod,Heet. al. developed
aninterestingschemeforthecapturingofliquidandgasinterfaceandtheysuccessfullyappliedthescheme
to thestudyoftheRayleigh-Taylorinstability[10].However,theschemein [10]onlyappliesthevander
WaalsEOSto theindexfunctionandit doesnotcapturetheliquidandgasphasechange.Also,thedensities
ofthe liquidandgasin [10]areartificiallyassignedwhichmaynot beconsistentwith thevaluesfromthe
vanderWaalsEOSandtheMaxwellconstruction.Basedondifferentinterfacesharpeningmechanism,such
asthereinitializationin thelevelsetmethod,manyinterfacecapturingschemeshavebeendevelopedin the
pastyears,see[25,13,15]andreferencestherein.

In thispaper,wearegoingto devclopagas-kineticBGK-typeschemeforthehyperbolicellipticsystem,
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where the continuum and momentum equations are solved directly. The phase transition and the motion of

multifluid interface are accurately captured by the current method.

2. Governing Equations and Interface Capturing Mechanism. In the one-dimensional case, the

governing equations for the isothermal hyperbolic-elliptic system arc

(2.1) P + =0
pU t pU 2 -4- p x

where p and U are the density and velocity. For the multiphase flow and phase transition problems, the

relation between the pressure p and the density proposed by van der Waals is quite satisfactory. The equation

of state is

pRT ap2,
P= 1-bp

where R is the gas constant, T is the temperature, and a and b are constants. The critical temperature for

the separation of liquid and gas is

8a

Tc- 27bR"

When the fluid temperature is below the above critical value, phase segregation occurs. In this paper, we

are going to study the fluids with fixed values a = 0.9, b = 0.25 and RT = 1.0. The corresponding critical

temperature in this case is Tc = 1.0666/R. Since RT is less than T_R, the phase transition can appear in

the current fluid system. The illustrative plot of the van der Waals EOS is shown in Fig.(5.1). The densities

of liquid pl and gas P0 can be obtained from Maxwell construction (equal area construction). The values in

the plot arc 1/pl = 0.494273, 1/p 9 = 1.405065, 1/p,_ = 0.574912, 1/pl_ = 1.036251. The fluid density p can

bc catalogued in the following regions:

o<-- Pl '

1 _<_< '
1 1

(2.2) - = o < _ < p-_;3'

P <p<og
1

P9

liquid phase

mctastable

unstable elliptic region (mixture)

metastable

gas phase

When the fluid density takes on values in the elliptical region, duc to the negative slope of Op/Op,

fluid instabilities will bc amplified. The fluid mixture in the elliptic region will evaporate to the gas state

or condense to the liquid state. So, similar to the shock steepening mechanism, the van der Waals EOS

has an intrinsic physical mechanism to separate different phases at the multifluid interface and sharpen the

interface. This is the main reason that we can observe the sharp liquid gas interface in the real world. This

property can also be used to develop an interface capturing scheme.

Numerically, due to the cell size limitation and averaging process [28], the liquid and gas will be artificially

mixed to form a numerical mixture with averaged density. If there is no any steepening mechanism at the

interface, such as at the contact discontinuity wave of the compressible Euler equations, the thickness of

the interface will grow with the square root of evolution time or total number of time steps. The real

sharp interface between different fluids is enforced through the van der Waals-typc EOS or the molecular

interactions. Once this kind of physics is incorporated in a multifluid numerical scheme, the numerically

averaged density in the elliptical region will be condensed to the liquid or evaporated to the gas and the

numerical interface can be kept sharp automatically.



In orderto usethesteepeningmechanismat amultifluidinterface,a schememustbeveryaccuratein
predictingtheliquidandgasdensitiesfirst. In otherwords,eventhoughthereis noexplicittermsabout
Maxwellequalareaconstructionin Eq.(2.1),a schememusthavecertainintrinsicdissipativemechanism,
suchastheimplicitviscositycapillarityterms,andbeableto pickupthephysicallycorrectsolutions,such
asthesameliquidandgasdensitiesfromtheMaxwellconstruction.Then,anumericallyaverageddensity
canbemostlikelylocatedin theellipticregion.Ontheotherhand,thenumericaldiffusioncannotbetoo
largeor it will overtakethephysicalsteepeningmechanismin theellipticregion.

Currently,it seemsdifficultfor anyhigh-orderschemeto predicta veryaccuratedensityjump at a
multifluidinterface.It is not surprisingthat manyexistinghigh-orderschemeswill giveliquidandgas
densitieswhichprobablydependontheinterpolationlimitcrs,CFL number, the cell size, even the Runge-

Kutta time stepping techniques. In the current paper, we present a gas-kinetic scheme to solve Eq.(2A).

Duc to the intrinsic diffusion and dissipative mechanism in the kinetic approach [28], the Maxwell equal area

rule is implicitly achieved. The numerically obtained equilibrium densities of liquid and gas are very close to

the theoretical values. At the same time, the phase boundary can be kept within two or three grid points.

With this property, the kinetic method is used to simulate the evolution of multifiuid interface, such as the

merging of two liquid droplets.

3. Gas-Kinetic Scheme for the Hyperbolic-Elliptic Equations. The BGK model has the stan-

dard form

(3.1) ft + uf_ -- g - f,
T

where f is the gas distribution function, g is the equilibrium state, and r is the particle collision time. Both

f and 9 are functions of space x, time t, and particle velocity u.

In order to recover Eq.(2.1) from Eq.(3.1), the equilibrium state g can be constructed as

(_-)_ e-_O'-v) _,9_--p

where A is defined by

(3.2)

.x=__ p
2p

1 1 - bp

2 RT- ap + abp 2

= A(p),

and the variation of A is related to the density changes

dA = 1 ab2p 2 - 2abp+ (a- bRT)
2 (RT - ap + abp2) 2

(3.3) = D(p)dp,

dp

where the functions A and D are well defined in the above equations. In the current paper, a fixed value

RT = 1.0 is used.

Due to the conservation properties in particle collision f and g satisfy the compatibility condition

(3.4) f(f - g)¢adu = 0 for g)_ = (1, u) r
J

at any point in space and time.



ThesolutionfortheBGKmodel(3.1)is

1 r t,_(_._÷_ _,/, _(t_t,)/_.4g

Jo(3.5) f(xj+l/2 , t, U) = _" _,- ,_ , -/_ _ + e-t/*fo(xj+x/2 -- ut),

where Xj+l/2 is the cell interface and x' = x j+1�2 -u(t-t p) is the particle trajectory. There are two unknowns

in the above equation. One is the initial gas distribution function f0 at time t = 0, and the other is g in

both space and time locally around (xj+l/_, t = 0). Similar to the BGK-type schemes for the Euler and

Navier-Stokes equations [28], the numerical scheme based on Eq. (3.5), along with the compatibility condition

(3.4), is described as follows:

Step(l): Use MUSCL technique [27] to interpolate the conservative variables W -= (p, pU) r, and obtain

the reconstructed initial data inside each cell

(3.6) wj(x) = w_(xj)+ w_(xj÷l/_)-w_(xj_l/_)(___) for _e [_ 1/2,xj+1/2],
Xjq_l/2 -- Xj_I/2

where Wj (x j) is the cell averaged value, and Wj (x j_ 1/2) and Wj (x j+ 1/2) are the values at the cell boundaries.

A nonlinear limiter, such as van Leer's limiter, is used in the current paper to get the cell boundary values.

From the reconstructed data, the values p, U and their corresponding slopes, e.g. Op/Ox and OU/Ox, are

known everywhcrc. Therefore, the variation A can be found subsequently through Eq.(3.3), such as OA/Ox =

D(p)ap/Ox.

Step(2): Based on the reconstructed data in Step(l), around cach cell interface xj _1/2, construct the initial

gas distribution function f0,

_(1+ _t(x - _j+1/2)), _ _<_j+l/_(3.7) fo(x) = gr (1 + a_(x -- Xj+l/2)), X > Xj+I/2,

where the states gt and g_ arc the Maxwellian distribution functions defined in terms of the conservative

variables at a cell interface,

(3.8) gt = gt (IWj (xj+ 1/2))

For example, with the distribution

(3.9)

all coefficients in gl can be obtaincd as

and g_ = g_(14_+l(xj+1/2)).

1

gt = pt(Al)_ e x_(_,-u_) _,
.ff

(3.10) U t = pjUj(Xj+l/2)/pj(xj+l/Z) •

A1 A(p z)

Similar formulation can be found for gL The coefficients a t,_" in Eq.(3.7) have the forms

lr Ir 2al'_ = mZl_ + m'i u + rn;' u ,

l,r l r l,r

which arc derived from the Taylor expansion of a Maxwellian distribution function. The coefficicnts (m I , m_' , m 3 )

depend on (pt Ut), (pr, U _) and their corresponding slopes, i.e.

and
-_z' Ox ' Ox /"



The detail relations arc

(3.11)

2) -2Au ,

F2V OV]'r
=k oxJ '

Therefore, with the initially reconstructed data in Step (1), fo(X) in Eq.(3.7) are totally determined.

the sake of simplicity, we assume Xj+l/Z = 0 in the rest of this paper.

Step(3): The equilibrium state 9 is constructed as

(3.12) 9 = go (1 + (1 - H[x])ftx + H[x]frx + At),

where H[x] is the Heaviside function and 90 is the state located at (x -- 0, t --- 0),

(3.13) go = P0()_0) ½e-)_°(u U°):.
7r

The coefficients fl, fir, and .4 in Eq.(3.12) have the forms

fl,r -It -lr -lr 2=m 1' +m_ u+m_ u ,

For

(3.14) A = .41 + A2u + .43u 2,

which have the same functional dependence on (Op/Ox, OU/Ox) and (Op/Ot, OU/Ot), as shown in Eq.(3.12).

Taking both limits (x --* 0) and (t _ 0) in Eq.(3.5) and (3.12), and applying the compatibility condition

at (x -- 0, t -- 0), we can get macroscopic quantities I¥o,

( 0)f i(3.15) 14% ---- poUo = go¢,_du = (gtH[u] + gr(1 -- H[u])) ¢_du,

where gZ and gr arc known from Step (2). Here W0 is the "averaged" flow variables at the cell interface,

from which go can be determined. Then, connecting 14_0 to the cell centered values Wj (x j) and 1_.+1 (xj+l),

wc can get the slopes for mass and momentum distributions on both sides

(ado O(poVo) __T Wo - W3(xj) for X < 0,
k _X ' OX Xj+I/2 -- Xj

(3.16) {Opt) O(poUo)r) T\ _ Wj+I(xj+I) -- Wo for x _>0,
k _X ' OX -- Xj+a -- Xj+I/2

from which Op/Ox, OU/Ox, OA/03: can be obtained. Therefore, (fit, fry can be determined in a similar way

as that in Eq.(3.12). The only, unknown in Eq.(3.12) is .4, which is related to Opo/Ot, OUo/Ot and 0£o/0t

(= D(po)Opo/Ot) through the relations

[ 1 (_t0)P00 1 _t 0 _tol l'r= + - 2 oU0

(3.17) A2 = 2Uo-g_-x + 23o ,

.A 3 _ --



To this point, we need to evaluate Opo/Ot and O(pU)o/Ot.

Step(4)" Substituting Eqs.(3.12) and (3.7) into the integral solution (3.5), we obtain the distribution func-

tion fatx=0,

(3.18)

f(0, t, it) = "_0g0-_-"Y1(aIH[u] + _(1 - H[u])) ugo

+_/2Ago+ "Y3((1 - utal)H[u]gl + (1 - utar)(1 - H[u])g_),

where

_/o = 1 - e -t/r,

_/1 ---- 7(-1 + e -t/r) -}- te -tl¢,

_ = _(tl_ - 1 + _-_/r),

"_3 : e-tiT"

The only unknown in Eq.(3.18) is A, which is a function of (Opo/Ot, OUo/Ot), see Eq.(3.18). Since the

compatibility condition must bc satisfied everywhere in space and time, it can be integrated in a whole CFL

time step AT at x = 0

(3.19)

from which

/o AT / (f(0, t, u) - g(0, t, u)) _dtdu = 0,

F Opo F O(pU)o ,T = f [-F3g0 + Flu (_lH[u] + at(1 - H[u])) go5-57, 5--5F- J

(3.20) + F3 (H[u]g I + (1 - H[u])g r)

+ F4u (atH[u]g l + a_(1 - tt[u])g_)] F_du

are obtained. All terms on the right hand side of the above equation arc known, and

F0 = AT - T(1 - e-AT�T),

FI=T(-AT+2T(1-e -AT/T )-ATe AT�r),

F_ = 1AT2 - vAT + T2(1 -- e-AT�r),
2

F3 = T(1 - e-AT�r),

F4 --T (-ATe ATIr + v(1 -- e-AT�T))

:
Thus, (Opo/Ot, DUo�Or), as wel as OAo/Ot, can be obtained from Eq.(3.21).

Step(5): The time-dependent numcricM fluxes of mass and momentum across the cell interface is

(Fp(t) ) =/u_fj+l/2(O,t,u)du,(3.21) Fw'j+I/2 = Fpv(t) j+l/2

where f is given in Eq.(3.18). The update of flow variables inside each cell becomes

1 fo AtW? +1 = Wj n + _ (gw, j 1/2 - gw, j+l/2) dr.



4. Numerical Examples. In this section, we are going to present a few test cases in both 1D and 2D.

The van Leer limiter is used for interpolations of p and pU at the beginning of each time step. The time step

AT is determined by the Courant-Friedrichs-Levy condition with CFL number =0.25. The collision time r

is defined as

(4.1) r = ClAT + C2AT l_
pr t

+p,. ,

where pl = A(pl), pT = A(pT), and C1 = 0.05,C2 = 2.0 are fixed in all calculations.

4.1. 1D Shock Tube Cases. In the following, four shock tube cases presented in Shu's paper [22] are

tested using the current kinetic scheme.

CASE(l)
The initial condition for this case is the exact liquid and gas densities from the Maxwell construction,

(1/pL = 0.494273, UL = 1.0)Ix<0.5 and (1/pR = 1.405065, Un = 1.0)lz>0.5.

The cell size used is Ax = 1/200. This test case is mainly to see if the scheme can keep the admissible jump

from the Maxwell construction. The numerical result (solid line and circles) for the density distribution is

shown in Fig.(5.2), where the dashed and dotted lines represent 1/p_, 1/pg, 1/p_ and 1/p;_ respectively.

CASE(2)

The second case has the following initial condition,

(1/pL = 0.54, UL = 1.0) and (1/pn = 1.8517, UR = 1.0).

This initial jump satisfies the Rankine-Hugoniot condition, but does not satisfy the physical principles,

such as viscosity capillarity condition. With the cell size Ax = 1/200, our simulation results are shown in

Fig.(5.3), where the solid line is obtained with a much refined mesh Ax = 1/2000. This case clearly shows

that the current scheme can pick up the physically admissible solution. There is no oscillations at the liquid

phase around the interface. Our results arc favorable in comparison with the ENO-typc method [22].

CASE(3)

This case has the initial condition

(1/pL = 0.45, UL = 1.0) and (1/pn = 2.0, UR = 2.0).

Fig.(5.4) shows the results with cell sizes Ax = 1/200 and Ax = 1/2000. From this figure, wc can also

observe the sharp interface between the liquid and gas phases.

CASE(4)

The initial condition for this case is

(1/p, U) = (0.8 + 0.2sin(x), 1 - 0.hcos(x)).

The initial density is entirely in the elliptic region. Periodic boundary condition is used. The solutions

with cell size Ax = 1/400 at different output time are shown in Fig.(5.5). These figures clearly show the

flow instability in the elliptic region and how the densities eventually go to the well defined liquid and gas

densities, even though the Maxwell construction is not explicitly used in the current scheme. For the liquid

and gas phases, the numerical densities obtained are about 1/p = (0.49400, 1.40175). The differences between

the numerics and the theoretical values (0.494273, 1.405065) are less than 0.5_. This is a very good case to

test the ability of any high-order scheme to capture the correct density jumps around the phase boundary,

as well as the sharpness of the interface. Our scheme can capture the jump within 2 or 3 cells, as shown in

Fig(5.5d).



4.2. Liquid-Gas Interfaces in 2D Cases. In 2D cases, in order to capture the movement of a mul-

tifluid interface the inclusion of surface tension and gravity becomes important. In the test case (5), the

gravitational force pG is implemented in the y-momentum equation for the liquid phase, and the nondimen-

sional magnitude of G is assigned the valuc 0.25. In the test case (6), an additional body force _pVV2p

is added in the momentum equations to recovcr the surface tension effect [19, 3, 10]. The nondimensional

coefficient _ used in case (6) is equal to 5.0 x 10 -6.

CASE(5)

This is a dam break problem. Many schemes have been used in this kind of free surface problems.

A short list includes Volume of Fluid (VOF), Boundary Integral Techniques, Front Tracking Method, and

Arbitrary Lagrangian-Eulcrian (ALE) method, see [11, 29, 4, 1] and references therein. The cell size used

in our study is Ax = Ay = 1/100. The schematic construction for this problem is shown in Fig.(5.6),

where the densities of the liquid and gas are assigned with the values from the Maxwell construction, i.e.

1/pl -- 0.494273 and 1/pg = 1.405065. The initial velocity of both gas and liquid arc zero, and no surface

tension is included in this case. Due to the numerical diffusion, any index function to describe the liquid

and gas interface will get smeared in the Eulerian advection scheme, and the smearing is proportional to the

square root of the number of time steps used. This is basically the main reason for the level set method to use

reinitialization to keep the interface sharp [2]. However, in our case, since the van der Waals EOS is used to

describe the liquid and gas phases, any smeared density at the interface is most likely to locate in the elliptic

region and the flow instability in these region will automatically steepen the interface. More specifically,

the condensation and evaporation process around phase boundary could move the averaged density to the

liquid or gas phases, and this effect compensates the numerical dissipation in the advection scheme. Fig. (5.7)

shows the time evolution of the liquid-gas interface, and the interface thickness keeps two or three mesh size

regardless the time steps used to get the final results. Fig.(5.8) shows the locations of the leading liquid

front. The numerical results arc compared with the experimental data in [18]. From this figure, we observe

that the numerical speed is slower than the experimental speed. The reason for the difference is that in the

current calculation the density ratio between liquid and gas is about 2.8, and the experimental data was

obtained for the water and air, and their density ratio is about 800. Therefore, the relative aerodynamical

resistence is much higher in the current study. Fig.(5.7) shows a very interesting phenomena that there is

a bore shock and a rarefaction wave in the liquid phase. This solution is amazingly close to the solution by

solving the shallow water equations. In other words, the current direct numerical simulation in some sense

validates the approximation used in theoretical derivation of shallow water equations.

CASE(6)

This test case is about the collision of two droplets. Similar to the last case, the initial densities of

the liquid and gas phases are assigned with the theoretical values again from the Maxwell construction, i.e.

1/pt = 0.494273 and 1/p 9 = 1.405065. The cell size used in this ease is Ax = Ay = 1/100. The initial

droplets with radius R -- 0.055 arc moving toward each other with a velocity magnitude of U = 0.125.

No gravity is included in this case. Fig.(5.9) shows the time evolution of the droplets. The collision and

merging of the droplets can be observed. Due to the steepening mechanism at the fluid interfaces from

the van der Waals EOS, the sharp interface is kept in the time evolution process. Fig.(5.10) shows the

density distribution across the central lines in both the x- and the y-directions of Fig.(5.9i), where the phase

boundaries keep 2 mesh points even though 1600 time steps have passed at that output time.

5. Discussion and Conclusion. In this paper, we have developed a gas-kinetic scheme /'or the

hyperbolic-elliptic system, where the van der Waals equation of state is used to describe the phase transition.



At the same time, the instability or sharpening mechanism in the elliptical region is used to capture the fluid

interface. Many test cases validatc the current approach.

The current paper is only a first step in the study of multifluid flow by solving the mixed type system.

Hopefully, in the near future we can answer the following questions.

1. If we only need to describe the motion of multifluid interfaces without including phase transition, such

as problems related to incompressible multifluid, we need to find some ways to simplify the van der Waals

EOS in order to get a simple (not simpler) numerical mcthod. But, the property Op/Op < 0 has to be kept

so as to get the interface sharpening mechanism.

2. The current approach can be used to capture the intcrface breaking and merging. Similar to the level

set method, the interface topological changes is easily handled. However, since the equations are basically

describing the phase transition problems, the mass conservation for each individual phase cannot be guar-

anteed in the evolution process. How to improve the mass conservation property for each individual phase

under the current framework is an important question that needs to be addressed.

3. In order to increase the density ratio between the liquid and gas phases, we need to use a more realistic

EOS to cope with that.

The preliminary results presented in this paper arc very promising and encouraging. Since there is no

tracking, index function, or special treatment used around the multifluid interfaces, the extension of the

current method to simulate hundreds or even thousands of bubbles (or droplets) becomes possible. Also,

the implementation of interface physics in the capturing of interface movement should bca reasonable and

reliable approach. This kind of scheme may provide a new way to solve many multifluid engineering problems

after its further dcvelopcmcnt.
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FIG, 5,1. van der Waals Equation of State for R'/' = 1.0 case.
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FIC. 5.2• Solid line and circles are the distribution of 1/p. The dotted lines are densities of 1/pt and 1/pa from Maxwell

construction. The region between dashed lines (1/pa, 1/p#) is the elliptic region where the fluid is intrinsically unstable.
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Fla. 5.3• (a) Circles are the simulation results of distribution 1/p, which are obtained with the cell size Ax = 1/200. The

solid line is the result obtained with a much refined mesh Ax = 1/2000. (b) Distribution of 1/p obtained with a refined mesh

Ax = 1/2000.
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FIG. 5.4. Distribution of lip. Circles arc the simulation result obtained with cell size Ax= 1/200.
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Fro. 5.5. The solid lines are the distributions of 1/p at different output times. The mesh size used is Ax = 1/400. (a)

t=O.O, (b) t--0.1, (c) t=l.0, (d) t=100.O. Circles are added in the plot (d) to show the number of grid points around the

multifluid interfaces.
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FIG. 5.6. Schematic diagram of liquid gas distributions.
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FIG. 5.7. Liquid-gas interfaces at different output time. (a) t = 0.0, (b) tv/-G/a = 0.5, (c) tv/_ = 1.0, (d) tv/-'G/a = 1.5.
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solid line is the time evolution of the leading liquid front. The density ratio between liquid and gas is around 2.8. The circle

is the experimental data in [18], where real water and air with density ratio around 800 were used.
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FIG. 5.9. Time evolution of the collision of two droplets. The output times are (a) t=O, (b) t=0.2, (c) t=0.25, (d) t=0.3,

(e) t=o.4o, (y) t=o.6o, (g) t=o.so, (h) t=I.eO, (i) t=_.60.
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FIC. 5.10. The distribution 1/p. (a). along the central line of Fig.(5.gi) in the x-direction, (b). along the central line

of Fig.(5.gi) in the y-direction. Since both the liquid and gas are treated as the compressible flow in the current study, small

density fluctuations appear in the dynamical transport process, especially in the gas phase.
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